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1. INTRODUCTION

Sensor systems, weapons direction systems, and communication systems which
depend upon the propagation of optical infrared wavelength energy through
the atmosphere are being developed and employed. Solutions to critical
problems in system design, deployment, and overall utility are paced by
knowledge and understanding of atmospheric effects on energy transmission
according to the Department of Defense (DOD) plan for atmospheric trans-
mission research and development, 16 March 1978, approved by the Under
Secretary of Defense. The plan showed that aerosols such as fogs, hazes,
smokes, dusts, clouds, and other randomly distributed atmospheric particles
are poorly understood, and it was recommended that a capability be developed
to measure, model, and predict accurately the atmospheric transmission
effects of such naturally occurring aerosols.

Of these various naturally occurring atmospheric aerosols, fog may stand
out as the one which would have the most serious effect on the operations
of the Army's electro-optical weapons and communication systems owing to
its persistence and intensity. Fog data have been collected and studied
since the beginning of the century.' More recent fog data may be found
in a large number of papers and reports cited in Houghton and Radford

2

and Stewart. 3 Despite their relative abundance, these fog data are judged
to be inadequate for modeling atmospheric transmission in different spectral
regions. Low et al3,4 have discussed fog data deficiencies. New fog
data are needed which extend measurements of particle sizes to tenths of
a micrometer in diameter and which are more accurately characterized in
terms of the prevailing synoptic situation and the dominant mechanism that
causes fog formation.

During February and March 1978, the Atmospheric Sciences Laboratory made
meteorological and microphysical measurements in Meppen, Germany. Except
for brief spells of clearing, light snow, drizzle, haze and fog occurred
almost persistently from 13 February through 5 March 1978 when the field
measurements ended. Despite persistent haze and fog occurrences, the

1H. G. Houghton and W. H. Radford, 1938, "On the Measurement of Drop-
Size and Liquid Water Content in Fogs and Clouds," Papers in Physical
Oceanography and Meteorology, Vol VI, No 4
2D. A. Stewart, 1977, "Infrared and Submillimeter Extinction by Fog,"
Technical Report TR-77-9, Technology Laboratory, Physical Science
Directorate, Redstone Arsenal, AL

3Richard D. H. Low, Louis D. Duncan, and Richard B. Gomez, 1978, "The
Microphysical Basis of Fog Optical Characterization," ASL-TR-OOII, US Army
Atmospheric Sciences Laboratory, ERADCOM, White Sands Missile Range, NM

4Richard D. H. Low, Louis D. Duncan, and Y. Y. Roger R. Hsiao, 1979,
"Microphysical and Optical Properties of California Coastal Fogs at Fort
Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, ERADCOM,
White Sands Missile Range, NM
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record of fog and haze data is fragmentary and so is the record of surface
observations, except for the period of 3 to 4 March 1978. A complete doc-
umentation of the Meppen field measurement program on instrumentation,
geography, topography, weather analysis, data collection procedure, and
particulate data will be published lateros

A detailed spectral analysis is covered in this report for the fog period
of 3 to 4 March 1978. By careful examination and comparison of temporal
variations of both the optical and microphysical properties of these fogs
from formation through dissipation, insight may be gained in the complex
nature of fog and haze optical modeling; then the diversity of the various
models could be explained and a more logical judgment arrived at as to the
quality of one model versus another for different fogs, individually or
collectively. The two Fort Ord fogs were selected for comparison, some
aspects of which have been investigated.4 This study was limited to the
spectral regions of 0.551im, 3.804m, and lO.6m wavelengths and the derived
liquid water content used as the common parameter in establishing models.

The following section briefly discusses the nature of the microphysical
data 3 to 4 March 1978, and the treatment of the data are given. In
section 3, the temporal variations of the extinction coefficients in the
three spectral regions are examined, and such spectral variations are
interpreted in the light of microphysical factors. Then regression rela-
tionships between spectral attenuation and liquid water content in these
wavelength regions are established together with a statistical analysis
of these regression lines or scaling laws. Microphysical implications
in optical modeling are discussed in section 4. In the final section,
the findings together with certain conclusions are summarized.

2. DATA PROCESSING

Fog drop-size samples were taken in the Meppen fog of 3 to 4 March about
every 30 seconds by a Knollenberg particle counter, model FSSP-lOOC,* which
covers a size range of O.25om to 23pm radius. Some 8 to 10 samples were
averaged by size categories to produce data points every 5 minutes. Fog
particle data were collected from 1828 hours LST, 3 March through 1100

5J. D. Lindberg, 1979, Private communications

'Richard D. H. Low, Louis D. Duncan, and Y. Y. Roger R. Hsiao, 1979,
"Microphysical and Optical Properties of California Coastal Fogs at Fort
Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, ERADCOM,
White Sands Missile Range, NM

*Questions were raised by Pinnick and Auvermann (1979, "Response Character-
istics of Knollenberg Light-Scattering Aerosol Counters," J Aerosol Sci,
10:55-74) about the definition of its manufacturer's size ranges. Unfor-
tunately, the authors fail to provide their calibration values.
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hours LST, 4 March (about 170 data points at 5-minute intervals). Actually,light rain, light drizzle, and ground fogs had been reported almost all dayprior to the sampling time. Nevertheless, the fog did not begin to thicken
until about 2200 hours. Following the termination of measurements at
1100 hours, the fog still persisted in patches for another 8 hours or soand was then followed again by light drizzle and rain, though the fog wasno longer as thick as it had been. Unfortunately, the entire life history
of this fog was not completely captured, but the data recorded was suf-
ficient to delineate the fog evolution reasonably well, especially in
comparison with the Fort Ord fog data. The 3 and 9 May 1978 Fort Ord
fogs were of the advection and radiation-advection types, respectively,
The Meppen fog was of the frontal type.

Once a drop-size distribution is given, its volume extinction coefficient
can be easily obtained by the following formula:

r x
B)= J r2 Q(mrx)n(r) dr . (I)

r 0

where S(A) is the total volume extinction coefficient per unit length at
a wavelength X; Q(mrx) the extinction efficiency factor, a function of
wavelength, complex refractive index m, and particle radius r; and n(r)
the number density or concentration of droplets from radius r to r + dr.

The integration interval for equation (1) is from r0, the smallest
droplet radius, to rx , the largest droplet. The total liquid water

content per unit volume is given by

r

W = fx r3 n(r) dr (2)

r
0

where p is the density of a droplet, taken to be unity in the case of fog,
and W is the liquid water content. Furthermore, one is often interested

7



in the percentage contribution that a size interval makes to spectral
attenuation. The expression for calculating percentage spectral contri-
butions is shown below:

r 0
Q(m,ro) r2 n(r) dr

F(r.i ) r. (3)

J Q(m,r,.) r' n(r) dr

0

where rI is any droplet radius less than or equal to r x and F(ri,\) is

the cumulative percentage contribution.

With the data processed according to equations (1) to (3), it was possible

to generate different kinds of plots to facilitate analysis.

3. OPTICAL AND MICROPHYSICAL PROPERTIES

Each fog has a life of its own,,-," , No two fogs at two different
places look exactly alike, meteorologically, microphysically, or environ-
mertally; however, all fogs would have to go ihrough a life cycle of forma-
tion, growth, maturity, and dissipation on the basis of microphysical con-
siderations. The fog life cycle can also be examined in the light of its
optical evolution. In this way, one would gain a better understanding not
only of how a fog evolves spectrally throughout its entire life but also,
more importantly, of why sometimes one single model or scaling law may not
completely represent that fog or any other one.

"Richard n. H. Low, 1975, "Microphysical Evolution of Fog," J Research
Atmosphere, 2:23-32

'R. J. Pilie, E. J. Mack, W. C. Kocmond, W. J. Eadie, and C. W. Rogers,
1975, "The Life Cycle of Valley Fogs: Part II: Fog Microphysics,"
J Appl Meteorol, 14:364-374

8W. T. Roach, R. Brown, S. J. Caughly, J. A. Garland, and C. J. Readings,
1976, "The Physics of Radiation Fogs: la-Field Study," Quart J Roy Meteorol
Soc, 102:313-333

'J. Goodman, 1977, "The Microstructure of California Coastal Fog and
Stratus," J Appi Meteorol, 16:1056-1067
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3.1 Spectral Evolution

Figure I (a and b) depicts the spectral evolution of the Meppen fog at
0.55[m, 3.80om, and l0.60tim wavelengths. The bold lines on the abscissa
show the time periods where the fog drop-size spectra are presented;
these periods were chosen because the fog appeared to have gone through
some dramatic changes in its life.

If a freehand trend line were drawn from about 1830 to about 0114 hours
when the fog reached its peak growth spectrally, the line would appear
to slope upward. Then the line would begin to stabilize but show a gentle,
downward trend. By about 1000 hours, the fog would display a tendency
to dissipate, although it would not. Tenuous as it may be on the basis
of cloud physics considerations, the international definition that fog
has a visibility of 1 km or less may be used, which is nearly equivalent
to an extinction coefficient of 4 km-1 or greater in the visible. The
period from 1830 through 2217 hours in which the visibility remained
above 1 km may be regarded as representing the formation stage of the fog,
where it was observed to be rather inhomogeneous in its structure. During
this phase, each extinction coefficient followed its own course of evolu-
tion. In terms of transmission, the l0.60,m region was the best and the
visible the worst, with the 3.80im lying in between. By about 2217 hours
as the fog began to grow vigorously, the extinction coefficients in these
three wavelength regions closed in upon one another, and the 3.8011m coef-
ficient then climbed above the visible and stayed up there until near dis-
sipation. The period from about 2217 through about 0114 hours may be
looked upon as the growth phase during which the fog showed appreciable
homogeneity. From 0114 hours on, the fog appeared to become stabilized
despite fluctuations due to the usual atmospheric turbulence and may be
said to have reached the mature stage, which lasted for about 9 hours.
During this period, the fog became quite homogeneous. The aging fog did
not disappear for another 8 hours when it was apparently washed out by a
light rain.

The spectral evolution of the Fort Ord advection fog of 3 May 1978 is
shown in figure 2 and that of the Fort Ord radiation-advection fog of
9 May in figure 3. In neither case can the life history be clearly
traced. Except for greatly reduced attenuation and the period up to
about 0130 hours, the 3 May fog appeared to resemble the mature phase of
the Meppen fog. The fog had already formed somewhere over the ocean as
a low-hanging stratus cloud and reached some aspect of maturity before
the cloud drifted onshore with the sea breeze. The fog data for the
period up to 0130 hours could very well represent the leading edge of the
incoming stratus. The figure does not show clearly which phase of life
of the 9 May morning fog is being depicted. Judging from the clustering
of the three extinction coefficients, one might suspect that the fog grew
and stabilized in a great hurry before being burned off by the rising sun.
In any case, these two fogs were fairly homogeneous.

9
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Figure 1 (a and b). Fog evolution in three spectral regions, Meppen,
Germany, 3-4 March 1978.
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Fog spectral evolution will now be examined in terms of application. Let
the contrast threshold be taken in the visible at 5 percent instead of the
usual 2 percent. Assume that the electro-optical sensors can recognize a
target also at the 5 percent level in the infrared (which is probably con-
servative, considering the almost certain contamination of sensor optics in
such a hazy and foggy environment in addition to the sensor's inherent
electronics noise level). Further assume that the sighting distance must
be at least 500 meters for a missile to accomplish its final course adjust-
ment. Then a line can be drawn across those graphs from the 6 kni I point
in the ordinate. These fogs would render any sensors in these wavelength
ranges completely ineffective, except for short periods during their forma-
tion phase and perhaps also during their dissipation phase. However. if
the required minimum sighting range is reduced to 100 meters, only the
sensors in the 10.6,m region would he capable of operating most of the time
in the Meppen fog, but in the Fort Ord foIs the sensors in the other spec-
tral regions can operate as well. The reason for this can be found only
by studying fog microphysics.

3.2 Spectral Evolution versus Drop-Size Distribution

The relationship between optical evolution and drop-size distribution in
terms of size range and the magnitude of the haze regime will be examined.
Figure 4 (a through e) illustrates the evolution of drop-size distrihutioni
in the Meppen fog for periods during which dramatic changIes appeared to have
taken place,. Although incomplete, the drop-size spectra of the Fort Ord fogs
on 3 and q May are depicted for comparison in figure 5 (a tlrougth C) and
figure 6 (a through c), respectively. In each time period, which may span
from 30 to 60 minutes, three drop-size distribution curves are present,,d. in
this way, some idea of how drop-size spectra had evolved durinq each period
and how they affected attenuation may he qained. The approximate time at
which the dramatic change presumably occurred is shown. The number concentra-
tions, size ranges, and mode radii of the spectra have been extracted from
the graphs by estimation. While there is usually only one mode in the haze
regime, , '" there may he one or more In the fog sector. However, only the
first one was picked. The others would be useful in studying the micro-
physical processes of collision, coalescence, sedimentation, and turbulenCe.
With the addition of liquid water content, the above-mentioned parameters
are summarized in table I.

"E. E. Hindman 11, and 0. '. R. lieimdahl, 1I,177, "Sublicron 1Ia,,

Droplets and Their Influence on Visibility in Fog," Preprints: (t h
Conference on Inadvertent and Plannei Weather Mo(,lification, Amrican
Meteorolo calI So ie(tyl, Bos ton, 10-13

"Richard 0. H. Low, Louis D. Duncan, and Y. Y. Roger R. 11siao. 1n7',

"Microphysical and Optical Properties of California Coastal Foes at Fort

Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, I RAPCOM,

White Sands Missile Range, NM
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The figures in relation to spectral evolution shall be discussed. During

the early formation period the three extinction coefficients differed

appreciably (figure la). Two features were dominant (fiqure 4a): a large

haze regime (in comparison with the fog part) and a small size range. As

a result, there was little water in the fog during this period. The num-

ber concentration of the first mode was nearly 60 times that of the second.

Note in figure la that the infrared extinctions at l0.6tnm and 3.801m were

nearly 18 and 4 times, respectively, lower than those in the visible. When

the 3.80,m extinction curve crossed the 0.55om curve (figure la), the haze

regime (figure 4b) shrunk considerably, and the drop-size range of the fog

regime extended beyond the sampling limit of the Knollenberg particle

counter; as a result, there was an appreciable increase in liquid water

content. Now the number concentration of the first mode dropped to 14

times that of the second. In neither case could a similar pattern of evolu-

tion be found in the Fort Ord fogs.

The Meppen fog then went through a period of rapid growth. B y the time
the three extinction coefficients approached one another (figutre la,
microphysical evolution Ifioure 4c) almost stopped (cf. fi1 res Sb and 6e!C
during this period. The fog appeared to have attained its maximum growth
at about 0114 hours. Its liquid water content jumped to '80. mgj m- ,

and the number ratio of the first mode to the second dropped to ,. The
haze regime became insignificant, and the drop-size range went far beyond
the instrument's sizing capability. Neither of the Fort Ord fogs reached
such intensity in terms of liquid water and attenuation. From then on.
the fog began to stabilize and was on its downward excursion (figure l,).
neglecting the turbulent fluctuations, These fluctuations. which could
be taken as an indication of turbulent mixing. are necessary to promlote a
fog's growth in depth and sustain its lifel and often bring about homo-
geneity. Figure 4d shows that the haze regime became appreciable again,
and the size range dropped to about 20,,m radius. Puring the period from
about 0300 through 0930 hours, the three extinction coefficients main-
tained their separate paces in an orderly manner with the 3.8,1 m coef-
ficient staying on top of the other two. Although stable and mature, the
fog began to age, and the microphysical mechanism of sedimentation took
its toll of large droplets (fioure 4e). Turbulent mixing appeared to
have subsided but worked to dissipate the fog as the temperature rose in
its diurnal march, Figures lb and 4e show that the two extinction coef-
ficients in the 0.55,m and the 3.0,om wavelength regions met again and
stayed close together (compare the period from 215S to .", hours) but
the drop-size distribution curves (figure .1b and 4e) were entirely dif-
ferent. The haze regime had somewhat regained its former magnitude. The
3 May Fort Ord fog, as noted earlier, resembled the Meppen fog in the

1B. Rodhe, 1962, "The Effect of Turbulence on Fog Formation," Tellu
14:49-86
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latter's stable and mature phase (cf. figures lb and 2) and appeared to
dissipate near the end of the sampling period during which the evolution
of its drop-size spectra in figure 5c bore some resemblance to that of

figure 4e. However, the 9 May fog still looked rather stable near the end
of drop-size measurement.

The Meppen fog was dealt with in great detail, while the Fort Ord fogs
played a minor role. In summarizing, an interesting but puzzling observa-

tion was that despite their variations the mode radii in both regimes in
these fogs were nearly of the same size, whereas the magnitudes of their
haze regimes were quite different. Except for the formation period of

the Meppen fog, the shapes of their haze regimes looked alike, yet the

number density of the mode radius in the Meppen fog was at least one order

of magnitude greater than that in the Fort Ord fogs. The magnitudes of
the haze regimes in the latter were quite comparable even though they
belonged in different fog types and had vastly different liquid water

contents. Moreover, the number concentration of the mode radius in the
fog regime of the Meppen fog never once caught up with that of its haze

sector. Only when the fog was about to attain its peak growth did the
ratio of their number reach a minimum. In the 3 May advection fog, the

two modes often exchanged their positions in number concentrations, but
the second mode on the average appeared to have the upper hand. The 9 May
radiation-advection fog resembled the Meppen fog, if limited to comparing
their haze and fog regimes.

This phenomenon may be briefly interpreted from a microphysical point of

view. The air over Meppen was relatively rich in submicron particles,

most likely a result of pollution, many of which would serve as fog con-

densation nuclei. By contrast, the air over Fort Ord was relatively clean

but rich in large sea-salt particles which grow easily and can attain

great sizes in a short time under slight supersaturation. In fact, the

haze regime in the 3 May fog could have been picked up while the low-

hanging stratus was moving overland; this may account for the similar

haze regimes in the two Fort Ord fogs. Another noteworthy feature in

these fogs is that the extinction curves with the 3.80im wavelength on

top, the O.55km wavelength in the middle, and the lO.6jim wavelength

at the bottom, which appeared to be normal in a fog when its visible

extinction went beyond 3 km
-1 (or 1 km visibility at the 5 percent con-

trast threshold). Note that the crossover of the 0.551,m and the 3.80om

curves in the Meppen fog took place at about 1 km visibility, as shown in

fiqure la at 2217 hours, An indication that visible extinction may not

correlate well with 3.801,m extinction, except for certain segments of

the fog's life, is a problem that will be examined further.

3.3 Microphysical Factors in Spectral Attenuation

The above discussion essentially dealt with how drop-size evolution was

reflected in spectral evolution, or vice versa. In this part a few

19



individual drop-size spectra will be examined and an attempt made to find
the factors that brought about spectral extinction as it was. Figure 7
(a through e) was prepared to depict five noralized cumulative distribu-
tions of the Meppen fog at about 4-hour intervals through the fog's life
cycle. Two cumulative distributions each of the Fort Ord fogs are shown
for comparison in figure 8 (a and b) and figure 9 (a and b). After some
consideration, the median radius of a distribution, which can be readily
estimated from the figures, was felt to be as meaningful as any other
parameter such as mean volume radius or root-mea,-square radius in explain-
ing spectral attenuation. In the same vein, the "median" radii of the
three extinction coefficient distributions can also be estimated; hence,
droplets smaller than or equal to these "median" radii would make up 50
percent contribution to spectral attenuation, or doubling the contribution
in this range would give the total extinction coefficient of the normal-
ized drop-size distribution. Table 2 shows these radii and the liquid
water contained in sizes up to the "median" radius, the percentage con-
tribution of the haze regime, and the total number density or concen-
tration which were extracted from the processed data. The haze regime
which contains negligible amount of liquid water is that portion of a fog
whose distribution appears to be separate from that of the fog regime and
whose particles are submicron in size, generally no greater than l;m to
2om in radius.lO, The drop-size data indicated that the haze regime
lay below about 1.25tim radius, but lim radius was used as the dividing
line in the analysis.

These figures are not restricted to the study of the spectral median radius
alone. The percentage contributions to spectral attenuation in any size
intervals can be readily obtained. Next, the Meppen fog will be examined
in detail and the Fort Ord fogs will be mentioned only to illuminate cer-
tain observations.

Table 2 shows that the fog evolution is well reflected in the size changes
as a function of time of the statistical median radius. Corresponding
changes of the median radii are also found in the 0.55,m and 3.801m spec-
tral regions. Note the changes with time of the size differences between

10E. E. Hindman I, and 0. E. R. Heimdahl, 1977, "Submicron Haze
Droplets and Their Influence on Visibility in Fog," Preprints: 6th
Conference on Inadvertent and Planned Weather Modification, American
Meteorological Society, Boston, 10-13

4Richard D. H. Low, Louis D. Duncan, aod Y. Y. Roger R. Hsiao, 1979,
"Microphysical and Optical Properties of California Coastal Fogs at Fort
Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, ERADCOM,
White Sands Missile Range, NM
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Figure 7 (a through e). Percentage cumulative frequencies in number density and in
three spectral regions as a function of time, Meppen, Germany,
3-4 March 1978. 2
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Figure 8 (a and b). Percentage cumiulative frequencies in number density
and in three spectral regions as a function of time,
Fort Ord, California, 3 May 1978.
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and in three spectral regions as a function of time,
Fort Ord, California, 9 May 1978.
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the median radii in these two spectral regions. From 2217 hours on, the
median radii in the 3.80um region became comparable with those in the 0.55;.m
region. As mentioned previously, at about 2217 hours in figure 1 (a and h)
the extinction coefficient in the 3.80im region crossed over the 0.55lm
coefficient and then remained above the latter for good. The same change
was also observed in the Fort Ord fogs. In contrast, the same cannot be
said of the percentages of liquid water content in these fogs. Yet, in
the l0.6,-m region, the median radius departed little from the statisti-
cal median-volume radius which, by definition, is the radius of the droplet
such that half the water is contained in larger (or smaller) droplets.

As regards the haze regime, which was discussed in the preceding section,
the changes with time of its magnitudes correspond very well in both the
statistical and the optical domains. Its predominant effect on visible
transmission during the fog formation stage and, to a lesser extent, dur-
ing the dissipation stage is well displayed in table 2. However, its
effect on 3.80om transmission diminished appreciably and became almost
negligible in the lO.6um region. Only when the fog became fully grown
and attained maturity did the effect of the haze regime nearly disappear
from 0114 to about 0539 hours. An explanation for the interaction between
haze and fog particles was offered by Low."

3.4 Regression Relationship between Spectral
Attenuation and Liquid Water Content

One of the technical goals of the DOD plan for atmospheric transmission
research and development, mentioned at the beginning of this report, is
to accurately model the propagation effects of naturally occurring aerosols,
Models may be empirical or physical. The former are usually derived from
experimental data and the latter from the so-called first principles such
that haze and fog formation, transport, and dissipation may be modeled in
relation to measurable or predictable meteorological parameters. The
haze and fog data collected by this laboratory in the past as well as data
reported in the literature do not lend themselves to development of physical
models. The meteorological descriptions of fog and/or haze were, without
exception, sketchy or, oftentimes, none at all. There is no way to develop
physical models on the basis of such data. Until haze and fog data become
available (collected specifically with the development of physical models
in mind), the approach at present must therefore be empirical.

'Richard D. H. Low, Louis D. Duncan, and Y. Y. Roger R. Hsiao, 1979,
"Microphysical and Optical Properties of California Coastal Fogs at Fort
Ord," ASL-TR-0034, US Army Atmospheric Sciences Laboratory, ERADCOM,
White Sands Missile Range, NM
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The liquid water content of a fog will be used as the common parameter to
be related to spectral attenuation at three wavelengths. It is a conve-
nient parameter to use since extinction coefficients at any wavelengths
which correlate well with liquid water content will be mutually correlated.
The Meppen and the Fort Ord fog drop-size data were processed to produce
liquid water contents and extinction coefficients in the 0.551,m, 3.8011m,
and lO.6pm spectral regions. These derived data were then plotted on
full-log papers separately and collectively so as to generate different
regression equations and thus enable regression analysis to be performed.
In this section the regression equations will be dealt with first, and
then a brief regression analysis will be performed to find out if these
equations, and hence these fogs, are similar or different statistically.

3.5 Regression Equations

When the liquid water and spectral extinction data were plotted in scatter
diagrams on full-log papers, a linear relationship in log space appeared
to exist between them (as demonstrated in the visible region by several
other authorsTl ,l"03 l). The form of the regression lines on the basis
of a least-square fit can he represented by

I, " a Wb  (4)

where o, a function of wavelength, is the extinction coefficient; a and
b are the regression coefficients, also functions of wavelength; and W is
the liquid water content. Figures 10 to 12 present the scatter diagrams
together with the regression lines and the so-called prediction bands.
Figures 10 and 11 show that three separate regression lines be derived
from each set of the fog data. To keep these figures uncluttered, only
the overall lines are displayed.

IH. G. Houghton, and W. H. Radford, 1938, "On the Measurement of Drop-
Size and Liquid Water Content in Fogs and Clouds," Papers in Physical
Oceanography and Meteorolg.y, Vol VI, No 4

"R. G. Eldridge, 1966, "Haze and Fog Aerosol Distributions,"
J Atmospheric Sci, 23:605-613

I'M. Kumai, 1973, "Arctic Fog Droplet Size Distribution and Its Effect
on Light Attenuation," J Atmospheric Sc, 30:635-643

'"R. G. Pinnick, n. L. Hoihjelle, G. Fernandez, 1. B. Stenmark,
J. D. Lindberg, G. B. Hoidale, and S. G. Jennings. 1978, "Vertical
Structure in Atmospheric Fog and Haze and Its Effects on Visible and
Infrared Extinction," J Atmospheric Sci, 35:2020-2032

26



14 -j

I 
L

4L

IN311A.40:) OIJ:)NIX3 wf - 19'

. . . .. . .



0

z- Z-4-)

Li5 LL L

0. - IEU)

'A cr WI (: CL

0 C- - )

Er aa-

X m

LCU

x 0 CI
C a-

'D.

w )

8L 0
(,W~) LNIDI3O~ OIJ.NII3 WI-O>

28-



0

woo 0- 0~

0\ \
LLc IA.L

4.4-
-4-

> )

-w - 4-'

1 Z
-0

0. C

0 4-

IN30-1330 NO.I:)IIX3wrt-9*0



The regression coefficients in different spectral regions for individual
as well as collective fog cases are listed in table 3. In figure 10,
there appeared to be a group of data in the Meppen fog in which perfect
linear correlation in log space existed between 0.55pm extinction and
liquid water content. All other data points fell below this perfect
regression line; that is, in the data range considered, for the same amount
of liquid water, these points would give lower extinction values. In
figure 11, which relates 3.80m extinction to liquid water, the same
group of data no longer represented a straight-line fit but more like a
quadratic fit on log paper. All other data points would again give lower
extinction values for the same liquid water content. In figure 12, which
concerns the l0.6pm region, the straight-line fit is nearly perfect for
all three fogs. That is why in table 3 only one set of regression coef-
ficients is given although some insignificant differences in coefficients
did exist when each fog was fitted separately. A discussion of these
observations and their implications will be presented in the following
section.

3.6 Regression Analysis

It is already known that these three fog episodes belonged in different
fog types. Not only that, two fogs came from one place, and one fog
from another, One would instinctively surmise that one model cannot
cover them all. Nevertheless, it would be of academic, if not practical,
interest to ascertain statistically whether the fogs were different and
whether a single model might suffice. To be able to carry out a simple
linear regression analysis, equation (4) is transformed into the following
linear expression:

Y = A + B X, (5)

where Y = logloo, A = log10a, and X = log1 oWo In the course of deriving a
least-squares fit, the statistics necessary for regression analysis are
not difficult to calculate. These statistics are listed in tables 4 and
5 for the 0.55um and 3.80m spectral regions, respectively; namely, number
density, N; mean X, X; mean Y, Y; variance of Y, V(Y); sum of X squares,
S(X2); and correlation coefficient, R.

A cursory examination of the two tables shows that by themselves, with the
possible exception of the last case in table 5, linear regression is accept-
able if considering the correlation coefficients alone. A table was not
prepared for the lO.6um region since the table would be superfluous. The
correlation coefficient for the line in figure 12 is 0.994, and the value
from the F-test or the ratio of mean squares due to regression to that due
to residual is 3.34 x 1Os. For a perfect regression line, the ratio, of
course, would be infinity; that is, no part of the line cannot be explained.
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The correlation for each case in table 5 for the 3.80m region is not as
good as that in table 4 when both the residual mean squares and the cor-
relation coefficients are considered. Therefore, an analysis of table 4
would suffice; any inferences drawn here would be applicable to those
cases in table 5. The intercepts and slopes of each pair will be compared.
Since the sample size is sufficiently large, the normal Z test can be used
instead of the student t test. At the 5 percent significance level, the
Z-value is 1,96, and table 6 was prepared. Only the Fort Ord fogs shared
the overall model or scaling law of the three fogs. No two fogs are alike
statistically although the Meppen fog and the two Fort Ord fogs seem to
share the same intercept. On the other hand, depending on sensor system
specifications and laboratory requirements, the overall models presented
in figures 10 to 12 may well serve the purpose. To this end, the predic-
tion interval or band was drawn in each figure at the 5 percent signifi-
cance level; that is, given a liquid water content value, the extinction
coefficient will lie within this band 95 percent of the time.

4. DISCUSSION

In this section an attempt will be made to relate the derived models to fog
optical and microphysical properties, and the latter's implications in the
formulation of these models in the three spectral regions will be discussed,

4.1 The 0.55pm Spectral Region

As already mentioned, quite a substantial number of data points in the
Meppen fog appeared to give a nearly perfect linear relationship between
visible extinction and liquid water content. To find out what made this
set of data so well-behaved, a freehand straight line was drawn through
these points, which yielded the following regression equation:

175.79 W° .70°  , (6)

whose slope does not differ significantly from that of the overall regres-
sion equation. To determine which data points would satisfy this equation,
the liquid water content was allowed to vary by +14 percent, thereby gen-
erating extinction coefficients which vary about +10 percent. Then all
the 170 Meppen data points were run through this T0 percent interval and
those lying In this interval were picked out and compared with the original
data while the times of their occurrences were noted. The results were
that while some points were contained during the fog's formation stage the
rest of them were found in the period from about 0240 through about 0930
hours with a few out of place here and there.
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It is in this period designated as the mature or stable phase of the
Meppen fog (figure Ib) that the three extinction coefficients appeared to
march in orderly steps. During the other periods, the data points all
lay below this line. In fact, one or more req.ression equations could be
derived from this set of data which one would expect to be different from
either equation (6) or the overall equation. The mature stage was marked
by a moderate haze regime (figure 4d and table 2), maximum mode radius in
the fog sector (table 1), minimum ratio in number density of the first mode
to the second (table 2), near maximum spectral "median" radius (tahle 2).

In the case of the 3 May advection fog, all data points appeared to lie
quite close to the overall regression line and seemed to be well-behaved,
conceivably an indication of maturity and stability. By comparison, all
the data points of the 9 May radiation-advection fog were below the over-
all line and appeared to form a lower boundary to the overall line. The
points by themselves, however, seemed to be fairly well organized.

Depending on the requirements, the three fogs may call for three different
representations. Moreover, the Meppen fog by itself may be modeled by two
regression lines, each depicting a different stage of its life history.
On the other hand, if the requirements are not too stringent, a single
model or scaling law for all three fogs might suffice,.

4.2 The 3.80m Spectral Region

The preceding discussion on the 0.551,m spectral region is equally appli-
cable to this region, except that the straight-line sector of the Meppen
fog now became parabolic. However, this is not too discernible in the
Fort Ord fogs, perhaps because of the paucity of data. Nevertheless,
note that in Pinnick et all" the same parabolic trend may be detected
in their figure lOc. Perhaps a'quadratic fit should be considered.

4.3 The lO.6pm Spectral Region

Since the linear relationship between extinction and liquid water content
is so nearly perfect in the lO.6,m region despite the diversity of fogs
in origin and type, this relationship could be taken advantage of. The
relationship strongly indicates that the liquid water content of a fog can
be derived from transmission measurement in the lO.6wm region. Following
measurements of transmittances in a fog chamber at different wavelengths,

1 R. G. Pinnick, D. L. Hoihjelle, G. Fernandez, E. B. Stenmark,
J. 0. Llndberg, G. B. Hoidale, and S. G. Jennings, 1978, "Vertical
Structure in Atmospheric Fog and Haze and Its Effects on Visible and
Infrared Extinction," J Atmospheric Sci, 35:2020-2032



Carlon et al1-' suggested precisely that kind of measurement in the lO.5tim
region. In a quasi-theoretical approach, Chylek 1' showed that the liquid
water content of a fog or cloud can be readily found regardless of its
drop-size distributions by means of transmission measurements at the ll.Om
wavelength if the largest droplet in the fog or cloud is no larger than
14um radius. The fog chamber which Carlon et a115 used in their experi-
ments produced droplets probably no larger than 101m radius. Therefore,
both sides came to the same conclusion.

The fogs used for this report had sizes far beyond lOwim in radius most of
the time, yet there existed a nearly perfect correlation between 10.611m
extinction and liquid water content. The same may be found in Pinnick et
al14 in their figure lOd, although they used the lO.O1m wavelength. Thus,
it seems that a 10.61im CO: laser may be used in a device designed so that
the liquid water content in a finite volume over a path length may be
obtai ned.

5. CONCLUSIONS

The Meppen fog which occurred on 3 to 4 March 1978 was analyzed in detail
both spectrally and microphysically. Spectral evolution was examined in
relation to drop-size evolution in an attempt to gain some insight in the
complex nature of establishing optical models or scaling laws and hence
to better judge the adequacy of a model or a law.

The magnitude of the haze regime of a fog, often a reflection of the pol-
lution level at a locality, showed a strong influence on the microphysical
properties and hence the optical characteristics of the haze regime. Gen-
erally, the dominance of the haze regime in the early life of a fog, which
severely affects the transmission in the 0.551,m and 3.80.m regions, hinders
a working relationship between extinction and liquid water due to its tiny
particle sizes and water deficiency. As the fog grows into maturity laden

15H. R. Carlon, D. H. Anderson, M. E. Milham, T. L. Tariove,
R. H. Frickel, and I. Sindoni, 1977, "Infrared Extinction Spectra of
Some Comon Liquid Aerosols," Appl Opt, 16:1598-1605

1 p. Chylk, 1978, "Extinction and Liquid Water Content of Fogs,"

J Atmospheric Sci, 35:296-300

1"R. G. Pinnick, D. L. Hoihjelle, G. Fernandez, E. B. Stenmark,
J. D. Lindberg, G. B. Hoidale, and S. G. Jennings, 1978, "Vertical
Structure in Atmospheric Fog and Haze and Its Effects on Visible and
Infrared Extinction," J Atmospheric Sci, 35:2020-2032
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with plenty of water and as its haze regime decreases in size and influence,
this relationship becomes more tractable in these two spectral regions. As
the fog becomes age4 and approaches dissipation, although its haze regime
may have regained some strength, the fog sector is still quite water laden

despite the depletion of its larger droplets, and the relationship between
extinction and liquid water is still relatively tractable. From this
study of the Meppen fog, indications are strong that a linear relationship
exists in the visible region, except perhaps at extremely low liquid water
content of the order of lO-4 g m "1 or less, and in the 3.80im region there
may be a quadratic relationship. By contrast, in the lO.6pm region the
relationship is almost perfectly linear, thus the suggestion that liquid
water content be obtained by means of transmittance measurements using a
lO.6pm CO laser.

As was noted in a preceding section, the Meppen fog may be represented
by a comprehensive regression line, a line according to equation (6),
or one or more lines derived without those data points used to generate
equation (6). However, the comprehensive line encompassed the complete
drop-size data set; its completeness lies in the fact that it represents
the Meppen fog's entire life history. Consequently, not much attention
was given to the Ford Ord fogs in this analysis. It is imperative that an
optical model representing a fog be built on the foundation of a complete
set of data, spanning fog formation through dissipation rather than a set
depicting an unknown phase of its life cycle, unless it can be demon-
trated statistically that the model derived from the former does not differ
significantly from the latter. Only in this way may the relative validity
of the models allegedly representing different haze and fog types be as-
sessed.

Five models or scaling laws in each of the three spectral regions are
presented: one each for the three fogs, one for all, and one for the
California coastal fogs. Statistically and genetically, these fogs are
different. By itself, the least-squares fit for each case in the visible
is quite respectable if its correlation coefficient means anything, In
fact, when all the fog data are taken together, the fit is no less respect-
able, neglecting the fact that only certain phases of the Ford Ord fogs
were portrayed, and the prediction bands at the 5 percent significance
level appear to justify this observation.

Finally, it should be emphasized that with the possible exception of the

Meppen model which represents one type of fog occurring in the Meppen

area, the Fort Ord models must be used with caution for reasons already

discussed. Again, whether one model or scaling law would suffice or more

than one is needed depends entirely upon the sensitivities and require-

ments of the electro-optical sensors to be deployed. When a heavy fog

became fully grown, sensors operating in wavelength regions other than

the lO.6um were so degraded that they were rendered ineffective. How-

ever, those In the lO.6pm region could operate most of the time. Then,

modeling the heavy fogs may become a moot question.
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ODUSA-OR Washington, DC 20310
Rm 2E621, Pentagon
Washington, DC 20301 Department of the Army
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ATTN: DRDAR-TSS (Bldg 59) Commander
Dover, NJ 07801 ERADCOM Technical Support Activity

ATTN: DELSD-L
Commander Fort Monmouth, NJ 07703
US Army Armament R&D Command
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ATTN: DRXDE-TD (Mr. Weldon Findley) APO New York 09080
White Sands Missile Range, NM 88002

HQ
Commander USAREUR & Seventh Army
TRASANA APO New York, NY 09403
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& Electro-Optics Lab Fort Monroe, VA 23651
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Commander Fort Monroe, VA 23651
US Army Night Vision
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